Your High School Boy WILL Be Offered Creatine Supplements: Should You Care?

Your High School Boy WILL Be Offered Creatine Supplements: Should You Care?

An article appearing in the journal Pediatrics had a researcher pose as a 15-year old boy to see what nutritional supplement stores would sell him. The results are interesting. The conclusions might not be so strong.  For the video version, click here.

Read More

Pregnant women, don't stop eating fish!


Tuna, shark, king mackerel, tilefish, swordfish. If you’ve ever been pregnant, or known someone who has been pregnant, this list of seemingly random aquatic vertebrates is all too familiar to you. It’s the “avoid while pregnant” list of seafoods, and it’s just one of the confusing set of messages surrounding pregnancy and fish consumption.

(For the video version of this post, click here).

Because aren’t we supposed to be eating more fish? Fish are the main dietary source for omega-3 fatty acids, which can cross the placenta, and may promote healthy brain development. Of course, some of these fish contain mercury which, as Jeremy Piven taught us all, may be detrimental to cognitive development.

Thankfully not while pregnant

These contradictory facts led the US FDA, in 2014, to recommend that pregnant women consume more fish, but not more than 3 times a week.  You have to love the government sometimes.

A study appearing in JAMA pediatrics is making some waves with its claim that high levels of fish consumption, more than 3 times per week during pregnancy, is associated with more rapid neonatal growth as well as higher BMIs throughout a child’s young life. Now, contrary to what your mother-in-law has been telling you, more rapid infant growth is not necessarily a good thing, as rapid infant growth is associated with overweight and obesity in childhood and adulthood.

But fish as the culprit here? That strikes me as a bit odd. Indeed, prior studies of antenatal fish consumption have shown beneficial or null effects on childhood weight gain.  What is going on here?

The authors combined data from 15 pregnancy cohort studies across Europe and the US, leading to a final dataset including over 25,000 individuals. This is the studies greatest strength, but also its Achilles heel, as we’ll see in a moment.

But first the basic results. Fish consumption was based on a food frequency questionnaire, a survey instrument that I, and others, have a lot of concerns about. Women who reported eating less than or equal to 3 servings of fish a week had no increased risk of rapid infant growth or overweight kids.  But among those eating more than 3 servings, there was around a 22% increased risk of rapid growth from birth to 2 and overweight at age 6.

These effects were pretty small, and, more importantly, ephemeral. The authors looked not only at the percentage of obese and overweight children, but the raw differences in weight. At 6 years, though the percent of overweight and obese kids was statistically higher, there was no significant weight difference between children of mothers who ate a lot of fish and those who didn’t. When statistics are weird like this, it usually suggests that the effect isn’t very robust.

In fact, this line from the stats section caught my eye, take a look:


That means the authors used numbers predicted by a statistical model to get the weight of the children rather than the actual weight of the children. I asked the study’s lead author, Dr. Leda Chatzi, about this unusual approach and she wrote “Not all cohorts had available data on child measurement at the specific time points of interest… in an effort to increase sample size and…power in our analyses, we…estimated predicted values of weight and height”.

So we have a statistical model that contains as a covariate, another statistical model. This compounds error into the final estimate, and in a study like this, where the effect size is razor thin, that can easily bias you into the realm of significance.

Pimp My Ride bias

And, at this point it probably goes without saying, but studies looking at diet are always confounded. Always. While the authors adjusted for some things like maternal age, education, smoking, BMI and birth weight, there was no adjustment for things like socio-economic status, sunlight exposure, diabetes, race, or other dietary intake.

What have we learned? Certainly not, as the authors suggest, that

no. just no.

That they wrote this in a study with no measurement of said pollutants is what we call a reach.

Look, you probably don’t want to be eating fish with high levels of mercury when you are pregnant. But if my patients were choosing between a nice bit of salmon and a cheeseburger, well, this study doesn’t exactly tip the scales.


Will antibiotics make our kids fat? Nope.


For the video version of this post, click here. The ubiquitous and often inappropriate use of antibiotics is a serious public health problem. So is obesity.  That these two factors could be linked is the conclusion suggested by a paper, appearing in the International Journal of Obesity, which leveraged the huge Geisinger health system database to examine the BMIs of children who had different exposures to antibiotics.

The researchers examined the records of just under 150,000 children ranging in age from 2 to 18 who had BMI measurements in the system. Now, the relationship between antibiotic use and BMI  is complex, so they tried to characterize a couple of metrics. They examined the immediate effect of the antibiotic - how much BMI increase could be expected after exposure to antibiotics in the past year, but they also measured the persistent effect of antibiotics - how much BMI increase would be associated with your lifetime exposure to antibiotics.

In both cases, antibiotics were associated with higher BMIs, but numbers matter. Let’s start with the basics. 59% of the children in the cohort had at least one antibiotic prescription. Shockingly (to me at least), of the kids that had contact with Geisinger in their first year of life, 49% had an antibiotic prescription in that year. We prescribe a LOT of antibiotics.

As to the effects, the short-term effect was relatively modest. Kids who got antibiotics in the past year had a BMI about 0.05 points higher than those who didn’t. The cumulative effect was even smaller - about 0.01 BMI points for one prior antibiotic at any point in life, but more courses led to more BMI gain. Those who had seven or more courses of antibiotics had a BMI about 0.1 points higher than those who never got antibiotics. All of these associations were statistically significant, but this was a huge study - these changes in BMI don’t strike me as clinically meaningful.

Moreover, these children were not randomized to get antibiotics. The researchers adjusted for age, sex, race, and medical assistance, but that’s it. Socioeconomic status could play a major role here, and medical assistance is not a close enough proxy for that. I also wonder about secondhand smoke exposure.

Putting it all together, the great obesity epidemic can’t be tied to antibiotic use. In fact, these small effect sizes make me less worried about the effects antibiotics have on our children's weight.

That said, this is one case where I’m glad there is some media hype around the study. While the headlines warning that antibiotics are making your children fat are completely overblown, perhaps the negative press will reduce the over-prescribing of antibiotics. And that’s good, not because it will cure the obesity epidemic, but because it will impact the emerging epidemic of microbial resistance.